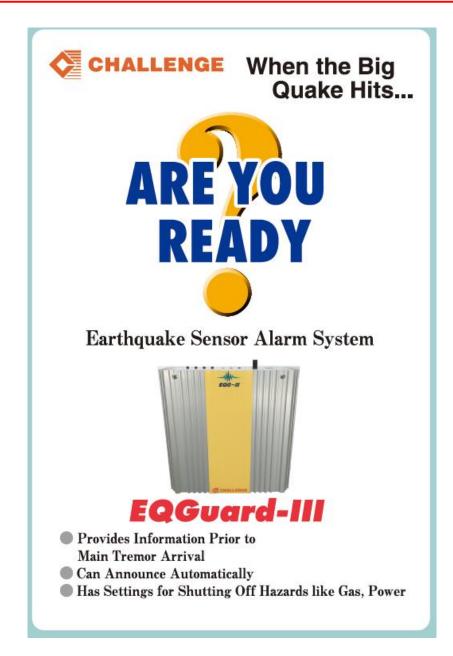
Earthquake Sensor alarm System

Challenge Co., Ltd October 2019 CHALLENGE

Introduction of company

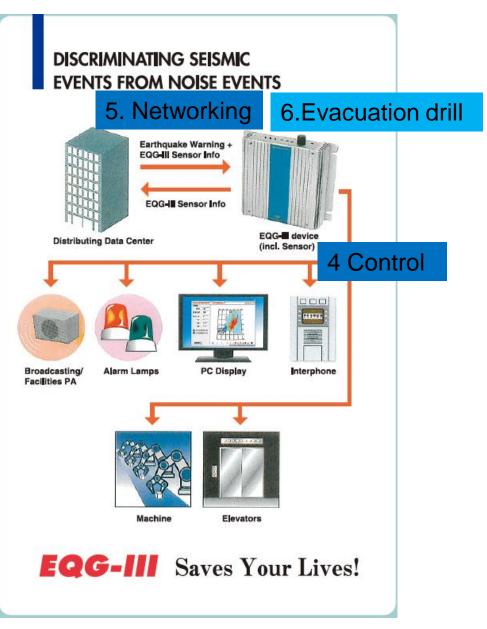

- Company Name : Challenge Co., Ltd.
- Company Representative : Kazuo Sasaki
- Date of Establishment : April 24, 2009
- Capital :15 million yen
- Area of Business :Maker of disaster-/security-related products as well as systems

 TEL 81-3-5809-2304
 FAX 81-3-5809-2305

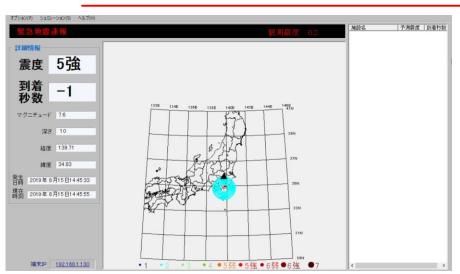
 http://www.challengego.co.jp

Function of EQ guard

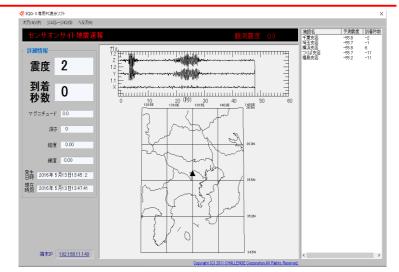
SENSOR NETWORK EARTHQUAKE NEWS FLASH

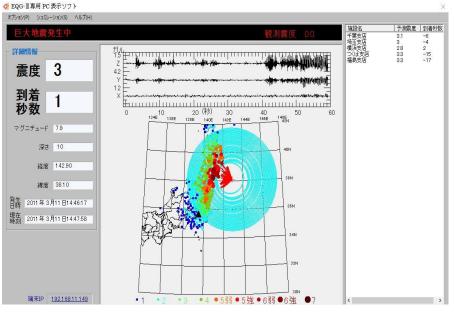

Sensor detects P wave => Sends out alarm => Displays area map also

ALARM


Built-in accelerometer (MEMS Sensor) detects P wave and issue earthquake alert before the arrival of strong shaking by S wave. EQG-III has a specialized software to distinguish between earthquake and living noise generated near EQG-III, which prevents it issuing of erroneous alert.

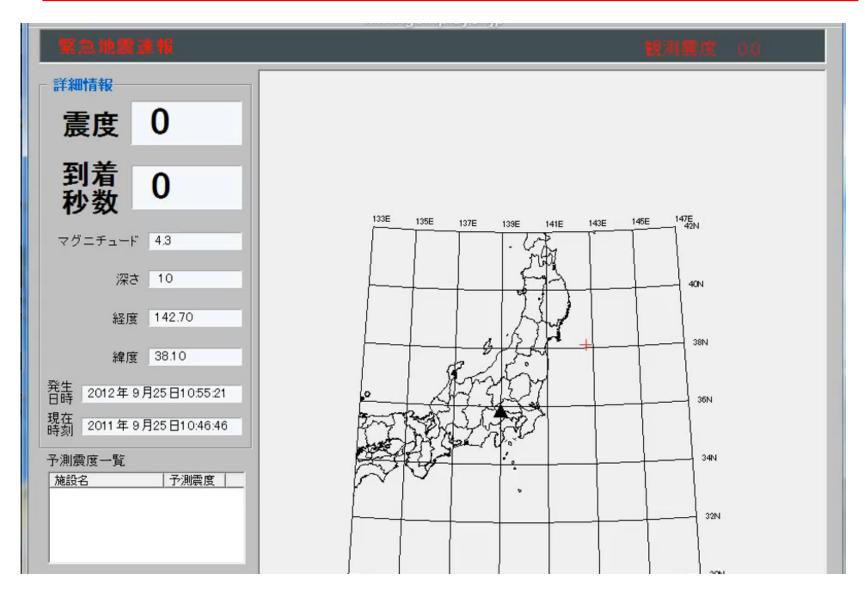
- Accelerometer detects P wave issues Alarm immediately
- Alarm through server issues Alarm after 1 second




Real time display of EQ guard

Epicenter information from JMA

On-site alarm



The log of Tohoku earthquake in 2011

Real time display of EQ guard Tohoku earthquake in 2011

Specifications

Item	EQGuard III	Transmit method	TIPv4, 100BASE-TX
Display	PC display	Operational switches	Test switchx2, Reset switch,Setting- clearing switch
Noise level	0.1 gal	Power	DC5V
ETA	PC display at -99 to 999sec per sec display	Exterior(mm)	188.7x160x50.5
Warning display	LED flash display	Weight(g)	Approx.1k g
Audio/Video output	Line output, Headphone output, Volume adjust	Environment	Temp.:-10degC~ +50degC,no fogging
Warning output	Loop output 6circuits	Facilities	Indoors,Power adapter

Customers

- Government and Local Government
- School, Company, Factory, Hotel and Apartment
- Construction Company, Maintenance Company and Insurance Company

Examples of customers

1,000 sets installed.

Japan:

Schools, kindergarten, nursery,

Nursing home etc

Indonesia: Yogyakarta, Aceh

Korea: Soul

Turkey ,Romania, PNG

Patent : Acquired (No.5373435) Launch : 2012

ROHM

Turkey

Romania

en diregan yapanen fe depensi sang torent tadare wan Tacing, terent te jadin alaka atres gin taken unab. Depensi bisake yang talaminen men on apensi bisaken. Sicht devel teksasen di anterest tati ci vecen ane atalian data kunda, titologi pit, takenza ase en et kaken men ana apensi bisaken. Sicht devel teksasen di anterest tati ci vecen ane atalian data kunda, titologi pit, takenza ase en et kaken men ana atalian developita data atalian developita data atalian atalian data atalian data atalian data atalian data atalian data atalian data atalia a q kategi pasa atalian data atalian datalian datalian datalian datalian datalian datalian datalian datali

PNG

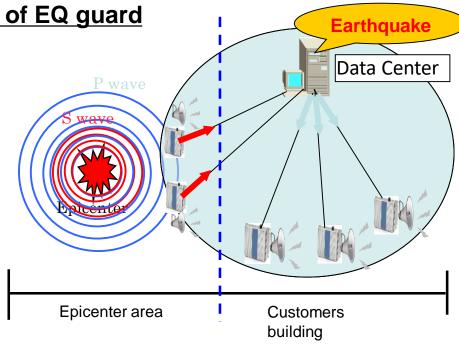
Japan

The benefit of Earthquake Early Alarm for DRR

Early warning system based on network of EQ guard

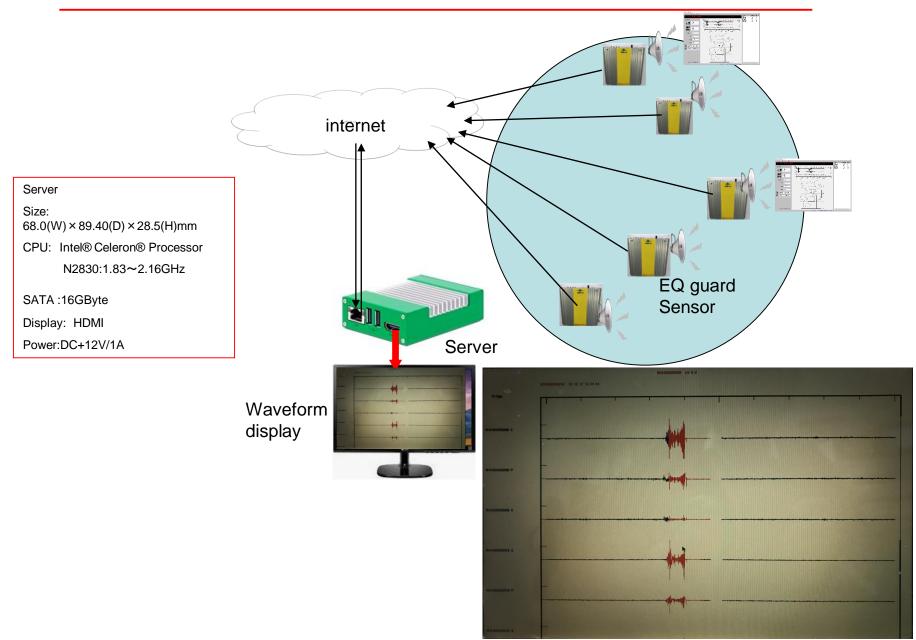
1.EQ guard can work as a <u>stand alone</u>, and also can work as a local network with several installations.

2.It is possible to construct a <u>regional</u> <u>earthquake alarm system</u> by making NW of EQ guard.

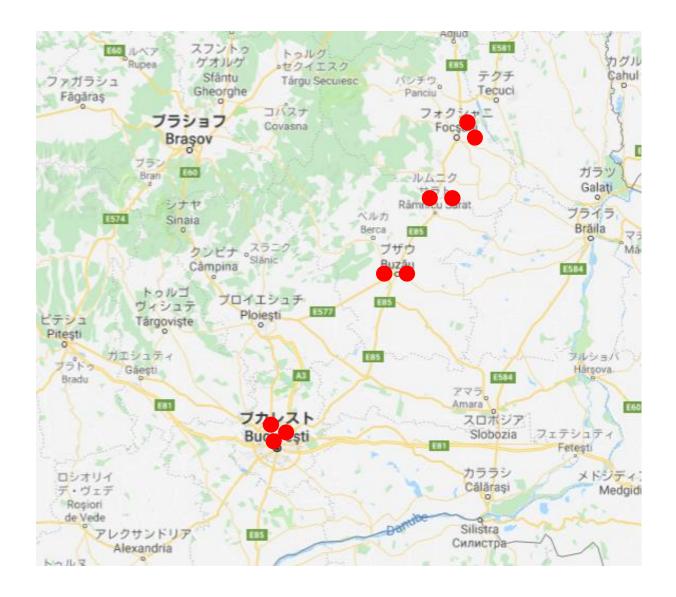

3. This system works <u>without nation-wide</u> <u>dense seismometer network</u>

Contribution to global targets

- Reduce fatalities and injured people by the Earthquake Sensor Alarm System (ESAS)
- Increase introduction countries and target people by establishing ESAS in each country


Contribution to SDGs

- Rectify inequality, and ensure the safety of all people by Introduction of ESAS.
 10
- Establish resilient infrastructure by ESAS10

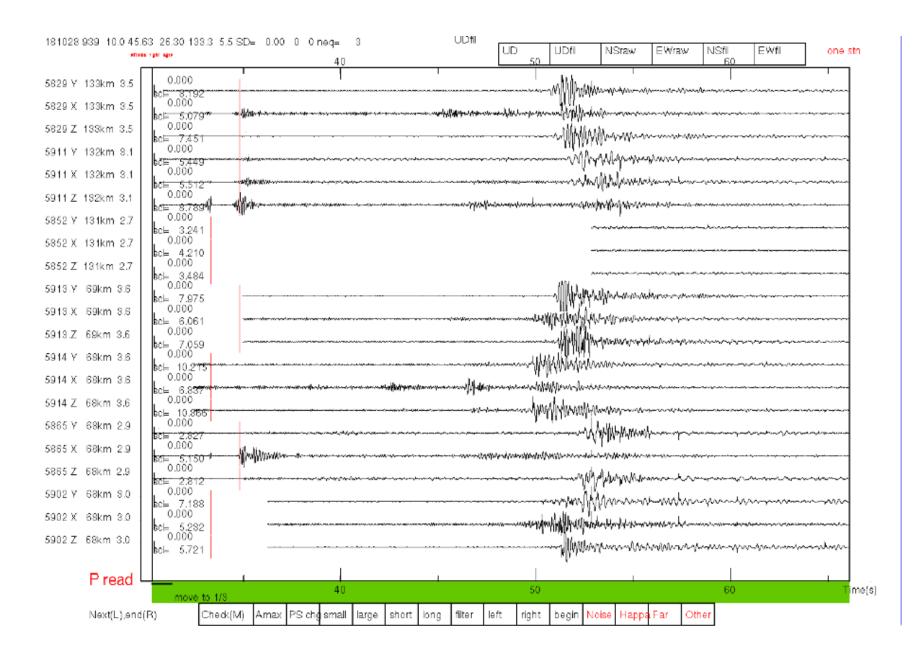

Image of Eq guard System

Regional alarm system in Romania

Observation data and analysis of Earthquake in Romania

2018-10-28 00:38:11 (UTC) M5.5 -16km SE of Comandau

M 5.5 - 16km SE of Comandau



Epicenter information M 5.5 - 16km SE of Comandau, Romania 2018-10-28 00:38:11 (UTC) 9:38:11(JAPAN) 45.652°N 26.403°E 151.0 km depth

Waveform of sensor_EQguard

Hypocenter location using P wave arrival times and Shaking intensities sent to the data center of Challenge Co,.Ltd from EQ GARD III stations in Romania.

```
      Stn code
      P arriv
      w
      P int

      MHH0005829
      34.8
      1.0
      0.5

      MHH0005865
      34.2
      1.0
      2.2

      MHH0005911
      34.6
      1.0
      1.4

      MHH0005913
      38.9
      1.0
      0.5

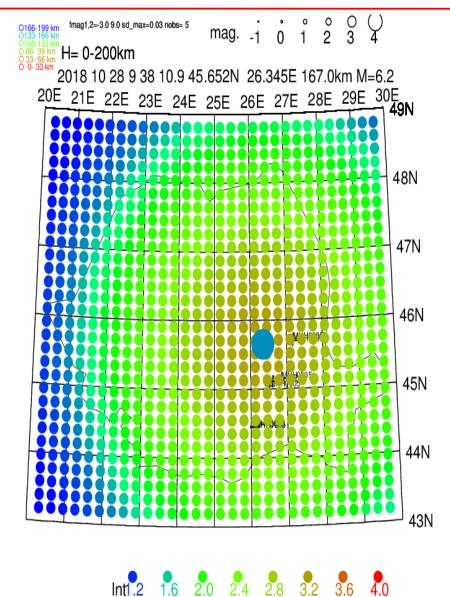
      MHH0005914
      34.8
      1.0
      0.9
```

Input data used by the real-time hypocenter location. "P int" shows real-time intensity measure at times after 4 sec from P wave arrivals.

Date H	Min Org.(sec)	Lati	tude	Longitude	Depth(km)	Intensity Mag
2018 10 28 9	38 10.9	<u>45.</u>	652	26.345	167.0	6.2
STN	Dis(km) dep	Obs	Est			
MHH0005829	67.81 167.00	3.52	3.13			
MHH0005865	65.06 167.00	2.89	3.13			
MHH0005911	65.53 167.00	3.06	3.13			
MHH0005913	134.08 167.00	3.57	2.88			
MHH0005914	67.93 167.00	3.57	3.13			

Hypocenter parameters by <u>USGS</u> 20181028 938 10.0 45.63 26.30 151.30 5.50

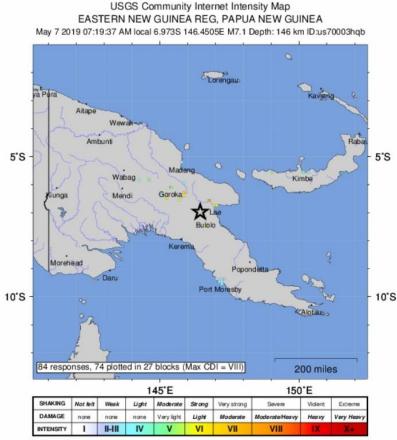
Computed hypocenter location and list of estimated shaking intensity of JMA definition. Obs: Observed JMA intensity,

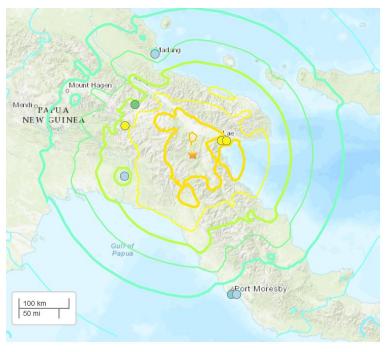

Est: Estimated intensity from hypocenter location and intensity magnitude.

Hypocenter and magnitude are calculated by the use of P wave arrival times and shaking intensity measured within 4 sec from P wave arrival, which are stored on the disk of data center of Challenge Cor. And are sent from stations of EQ Guard III.

There are difference in the definition between Shaking intensity magnitude Richter magnitude.

Intensity map




Distribution of estimated shaking intensity calculated from the P wave arrival times and shaking intensities data, which are stored on the hard disk of the data center of Challenge Co ,.Ltd , and are send from stations of EQ GARD III.

M 7.1 - 33km NW of Bulolo, Papua New Guinea 2019-05-06 21:19:37 (UTC) 2019-05-07 6:19:37(JAPAN) 6.975° S 146.449° E146.0 km depth

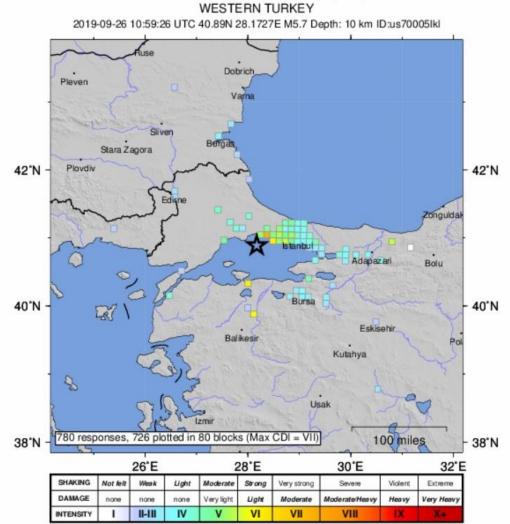
M 7.1 - 33km NW of Bulolo, Papua New Guinea 2019-05-06 21:19:37 (UTC) 2019-05-07 6:19:37(JAPAN) 6.975° S 146.449° E146.0 km depth

Processed: Wed Jun 5 21:16:36 2019 vmdyfi1

SHAKING	Not felt	Weak	Light	Moderate	Strong	Very strong	Severe	Violent	Extreme
DAMAGE	None	None	None	Very light	Light	Moderate	Moderate/heavy	Heavy	Very heavy
PGA(%g)	<0.05	0.3	2.76	6.2	11.5	21.5	40.1	74.7	>139
PGV(cm/s)	< 0.02	0.13	1.41	4.65	9.64	20	41.4	85.8	>178
INTENSITY	1	11-111	IV	V	VI	VII	VIII	DX	Xe

Observation data of EQ guard at Lae

MHH0005924	1957	620 0731	1200.21	0.62	0.62	6.3	24.0	12	
MHH0005924	19 5 7	620 1119	1200.21	0.78	0.88	6.0	24.2	12	
MHH0005924	1957	620 1311	1200.21	0.78	1.16	6.0	24.2	12	
MHH0005924	1957	620 2 63	1200.21	0.78	1.40	6.0	24.2	12	
MHH0005924	1957	620 2887	1200.21	0.78	1.60	6.0	24.2	12	
MHH0005924	19 5 7	620 3231	1200.21	0.78	1.82	6.0	24.2	12	
MHH0005924	1957	620 4559	1200.21	0.78	2.05	6.0	24.2	12	
MHH0005924	1957	620 4987	1200.21	0.78	2.30	6.0	24.2	12	
MHH0005924	1957	620 6775	1200.21	0.78	2.52	6.0	24.2	2	
MHH0005924	19 5 7	620 9303	1200.21	0.78	2.77	6.0	24.2	2	
MHH0005924	19 5 7	62012891	1200.21	0.78	2.98	6.0	24.2	2	
MHH0005924	19 5 7	62014443	1200.21	0.78	3.22	6.0	24.2	2	
MHH0005924	19 5 7	62015131	1200.21	0.78	3.99	6.0	24.2	2	
MHH0005924	19 5 7	62015479	1200.21	0.78	4.33	6.0	24.2	2	
MHH0005924	19 5 7	62016499	1200.21	0.78	4.65	6.0	24.2	2	
MHH0005924	19 5 7	62017103	1200.21	0.78	4.86	6.0	24.2	2	\neg


Sensor detected P wave 23second after earthquake happened

Sensor	Detect	ion time	Time of	Real time	Amplitude rations	Average	ĺ
Serial ID	YY/MM/DD	HH:MM.SS.MS	P-wave	intensity	of P-wave befor and after	frequency	ĺ
MHH0005924	2019/5/7 🤇	06:20:00:731	1200.21	0.62	6.3	24	
MHH0005924	2019/5/7	6:20:01:119	1200.21	0.88	6	24.2	ĺ
MHH0005924	2019/5/7	6:20:01:311	1200.21	1.16	6	24.2	
MHH0005924	2019/5/7	6:20:02:063	1200.21	1.4	6	24.2	
MHH0005924	2019/5/7	6:20:02:887	1200.21	1.6	6	24.2	
MHH0005924	2019/5/7	6:20:03:231	1200.21	1.82	6	24.2	
MHH0005924	2019/5/7	6:20:04:559	1200.21	2.05	6	24.2	
MHH0005924	2019/5/7	6:20:04:987	1200.21	2.3	6	24.2	
MHH0005924	2019/5/7	6:20:06:775	1200.21	2.52	6	24.2	1
MHH0005924	2019/5/7	6:20:09:303	1200.21	2.77	6	24.2	
MHH0005924	2019/5/7	6:20:12:891	1200.21	2.98	6	24.2	Í
MHH0005924	2019/5/7	6:20:14:443	1200.21	3.22	6	24.2	
MHH0005924	2019/5/7	6:20:15:131	1200.21	3.99	6	24.2	
MHH0005924	2019/5/7	6:20:15:479	1200.21	4.33	6	24.2	
MHH0005924	2019/5/7	6:20:16:449	1200.21	4.65	6	24.2	
MHH0005924	2019/5/7	6:20:17:103	1200.21	4.86	6	24.2	

The Max observation seismic intensity is 4.86(japan) at Lae (7~8MMI).

M 5.7 - 20km ESE of Marmaraereglisi, Turkey 2019-09-26 10:59:26 (UTC) 2019-09-26 13:59:26 (Turkey) 2019-09-26 19:59:26(JAPAN) 40.890° N 28.173° E 10.0 km depth

M 5.7 - 20km ESE of Marmaraereglisi, Turkey 2019-09-26 10:59:26 (UTC) 2019-09-26 13:59:26 (Turkey) 2019-09-26 19:59:26(JAPAN) 40.890° N 28.173° E USGS Community Internet Intensity Map

Processed: Thu Sep 26 23:44:29 2019 vmdyfi1

Observation data of EQ guard at İzaydaş

Setting place: İzaydaş (Katı Atık Arıtma Tesisi) 4th floor Sensor ID:MHH0005870

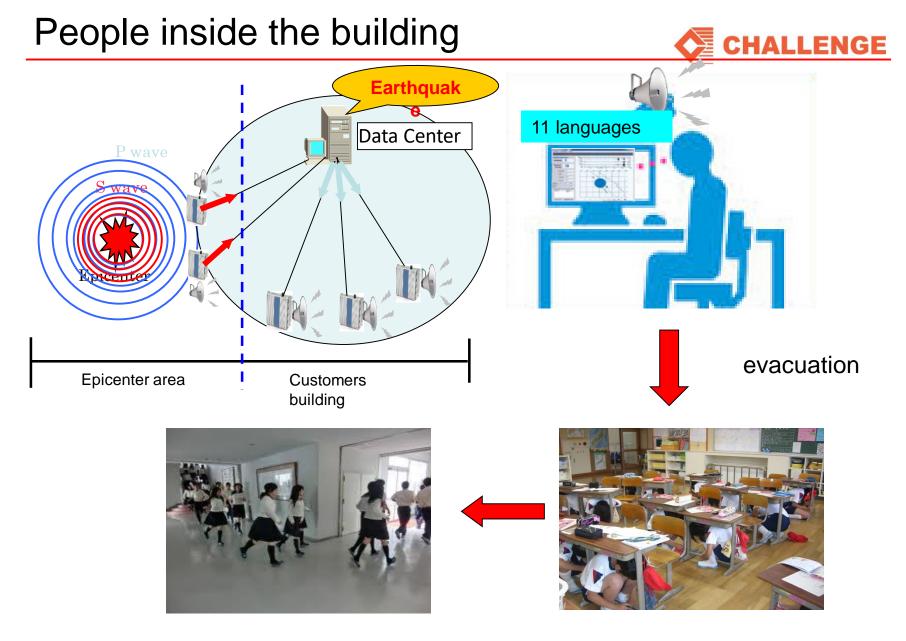
MHH0005870	19	926195952835	3591.28	-9.89	2.68	7.3	33.5
MHH0005870	19	926195953327	3591.28	-9.89	3.74	7.3	33.5
MHH0005870	19	926195956439	3591.28	-9.89	3.98	7.3	33.5
MHH0005870	19	92620 010755	9.18	-9.89	3.48	9.3	5.7
MHH0005870	19	92620 011515	9.18	-9.89	3.79	9.3	5.7
MHH0005870	19	92620 012935	9.18	-9.89 _	4.00	9.3	5.7

Sensor detected P wave 26second after earthquake happened

Sensor	Detection time		Time of	Real time	Amplitude rations	Average
Serial ID	YY/MM/DD	HH:MM.SS.MS	P wave	intensity	of P-wave befor and after	frequency
MHH0005870	2019/9/26	19:59:52:835	3591.28	2.68	7.3	33.5
MHH0005870	2019/9/26	19:59:53:327	3591.28	3.74	7.3	33.5
MHH0005870	2019/9/26	19:59:56:439	3591.28	3.98	7.3	33.5
MHH0005870	2019/9/26	20:00:10:755	9.18	3.48	9.3	5.7
MHH0005870	2019/9/26	20:00:11:515	9.18	3.78	9.3	5.7
MHH0005870	2019/9/26	20:00:12:935	9.18 <	4	9.3	5.7

The Max observation seismic intensity is 4.00(japan) at İzaydaş (6MMI).

Setting place:Hospital Sensor ID:MHH0005886 Distance from epicenter: 206 Km


MHH0005886	19	926195953955	3589.35	-9.89	0.93	10.6	39.4
MHH0005886	19	926195954567	3589.35	1.21	1.21	10.6	39.4
MHH0005886	19	92620 0 8 43	5.22	2.67	2.67	14.5	1.4

Sensor detected P wave 27second after earthquake happened

Sensor	Detection time		Time of	Real time	Amplitude rations	Average
Serial ID	YY/MM/DD	HH:MM.SS.MS	P-wave	intensity	of P-wave befor and after	frequency
MHH0005886	2019/9/26	19:59:53:955	3589.35	0.93	10.6	39.4
MHH0005886	2019/9/26	19:59:54:567	3589.35	1.21	10.6	39.4
MHH0005886	2019/9/26	20:00:08:043	5.22 🤇	2.67	14.5	1.4

The Max observation seismic intensity is 2.67(japan) at hospital (5MMI).

Evacuation Drills

80% of deaths could be prevented by 5 seconds prior alarm if people were well trained. Evacuation drill is very important.

The Video of evacuation drill in Japan O CHALLENGE

Evacuation Drills in Romania 2018.11~2019.2

Evacuation Drill in Bucharest

Date:12/11/2018 PM:15:00~

School: Colegiul Economic Virgil Madgearu

Video of Evacuation Drill

News of Local media

Simulare și exercițiu de amploare în caz de cutremur, cu participarea japonezilor, la CN Pedagogic "Spiru Haret" Focșani

Ziarul de Vrancea 20 feb 2019 | 721 vizualizări

Distribuie: 🔟 Like 0 | 🕤 🍞 🚱

VIDEO și GALERIE FOTO: JAPONEZI la Colegiul Pedagogic din Focșani pentru un exercițiu în caz de CUTREMUR

Sistem de anunțarea seismelor cu 20 de secunde înainte să se producă, instalat în trei școli din București

https://adevarul.ro/news/societate/Scolidotate-echipament-anunta-cutremurul-20secunde-produca-efecte-1_5c6c17dc445219c57e56ccf4/index.html

https://www.ziaruldevrancea.ro/special/educatie/ simulare-si-exercitiu-de-amploare-in-caz-decutremur-cu-participarea-japonezilor-la-cnpedagogic-spiru-haret-focsani

https://monitoruldevrancea.ro/2019/02/21/vid eo-si-galerie-foto-japonezi-la-colegiulpedagogic-din-focsani-pentru-un-exercitiu-incaz-de-cutremur/

Video of Seminar

https://www.ziaruldevrancea.ro/special/educatie/simulare-si-exercitiu-deamploare-in-caz-de-cutremur-cu-participarea-japonezilor-la-cn-pedagogic-spiruharet-focsani

All of the Questionnaire

2019/2/19~2019/2/21

4 school

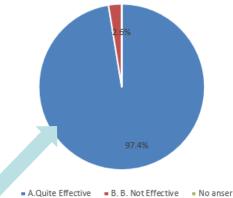
students(total)

625 4 校全体

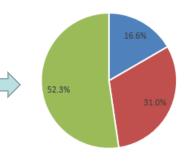
Exercițiul de Cutremur și Acțiune "Sfaturi pentru a vă proteja de cutremur"Chestionar

I. Ai efectuat corect exercitiul 訓練は正しく行えたか

Α.	Efectuat		B. Neefectuat	No anser
出	来た	621	4	0
		99.4%	0.6%	


2.Intensitatea sunetului alarmei

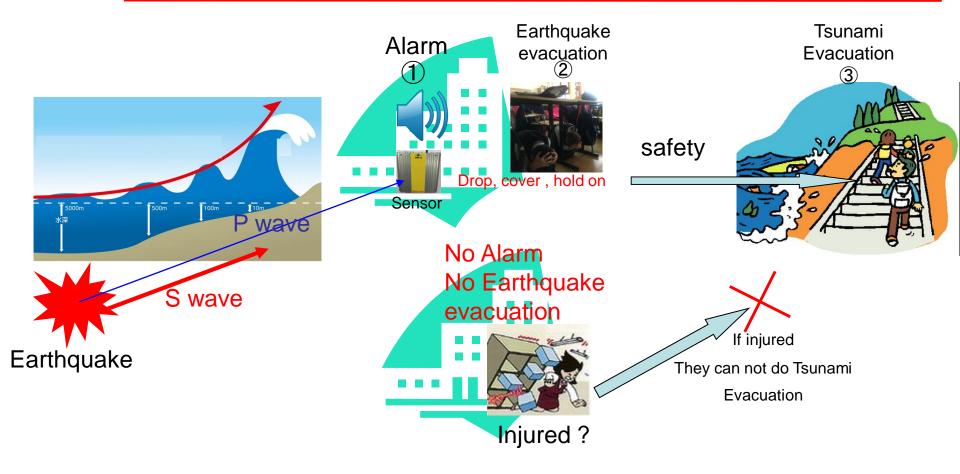
etului alarm	lei	音重は週止か		
A. Satisfăcător		B. Nesatisfăcător	No anser	
適正	563	61		1
	90.1%	9.8%		0.1%


the second state of the

3.Claritatea sunet	ului		メッセージは適正か	4	
	A. Satisfăcăt	or	B. Nesatisfăcător	No anser	
	適正	545	79	1	
		87.2%	12.6%	0.29	6
4.Crezi ca alarma	este		訓練は効果があるが	2	
4.Crezi ca alarma	este A. Eficientă		訓練は効果があるカ B. Neeficientă	No anser	
4.Crezi ca alarma		609)

Do you think that the frequency of the drill should be: 訓練の適正な回数

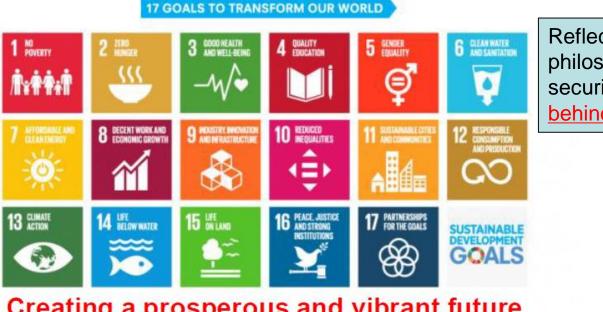
5. Crezi ca frecvența exercițiului trebuie sa fie: 訓練回数は年何回が適当か


1回 104 2回 194 4回 327 16.6% 31.1% 52.3%	A. O dată pe an	B. De	două ori pe a	C. De p	atru ori p	e an
16.6% 31.1% 52.3%	1回 10)4 2回	194	4回		327
	1	6.6%	31.1%		52	.3%

6. Crezi ca sistemul de alarmare in caz de cutremur este: アラームシステムは必要か

A. Necesar	B. 1	Nu este necesar	No anser
必要 61	5	10	0
9	8.4%	1.6%	

Alarm + Evacuation drill save people



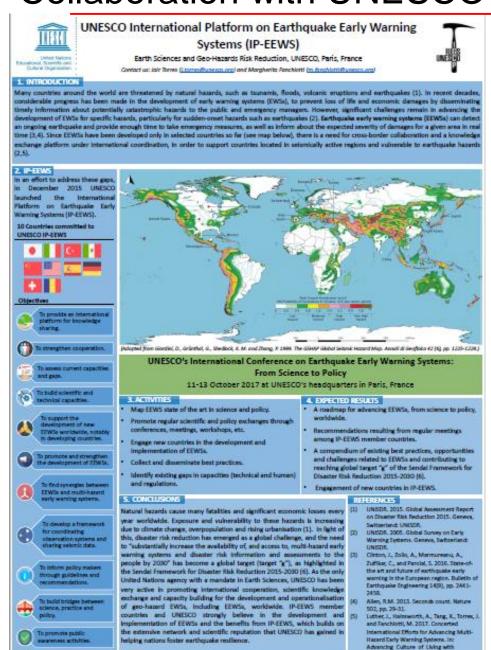
 $(1 + (2) + (3)) = perfect Evacuation drill _____ people be safe$

Japan's efforts for promoting the SDGs

SUSTAINABLE GOALS

Reflecting the philosophy of human security, "<u>no one left</u> <u>behind"</u>

Creating a prosperous and vibrant future through promoting the SDGs


Ministry of Foreign Affairs of Japan

	Conv	entional method	New method		
Observation network	Nationwide network		Observation network / alarm / evacuation drill =Set		
	cost 30,000US\$@1,00 0unit=30milionUS\$		cost	<u>3,000 us\$@10 units =</u> <u>30,000US\$</u>	
	period	10 years, 20 years, 30 years	period	<u>3 months</u>	
alarm	Receiver / Alarm required		<u>Pre-set</u>		
Evacuation drill	Separate		Easy to conduct with just push		

Collaboration with UNESCO-UNDP

👍 //www.facebook.com/unexcoEARTH/ 😈 //twitter.com/unexcoEARTH/

() //www.instagram.com/unesco.earth/ 🙀 //www.unesco.org/new/en/natural-aciences/hpecial-themes/disaster-risk-reduction/

Landslides. Springer, vol. L.

Geneva Switzerland: UMISOR

UNSDR. 2015. Sendsl Framework for Disaster Risk Reduction 2015-2030.

Presentation ceremony of EQ guard at JBP meeting

21 January 2019 (Tokyo)

Meeting of Regional office of UNDP

29 January 2019 (Bangkok)

38

To the World

