

"

They say, a picture is worth a thousand words, But experience, now that's a million words.

Ariston Gonzalez

- Aerospace Research and Engineering background

PHILIPPINES

Amadore, L. "Socioeconomic impacts of extreme climatic events in the Philippines". November 25, 2005. http://www.adrc.asia/nationinformation.php?NationCode=608

Why do we do this? DATA

Data saves Time.

Data saves Resources.

Data saves lives.

MISSION

Help our organizations be fully **prepared** for any disasters **through satellite data**, **remote sensing**, and **realistic immersive training simulations**.

This way they are more **efficient**, **productive**, and **resilient**.

Risk and the context of hazard, exposure and vulnerability

Figure 1.1. Risk reduction - a journey through time and space

(Source: UNDRR 2019)

1 (United Nations General Assembly 2015a)

Clource: UNDRR 20195

Problem:

Even though a lot of data is available, many disaster responders struggle with data utilization

Barriers to Data Utilization

EXPERTISE Barrier

Converting Level 0 (Raw) data to useable data requires experts, and applying the processed data for disaster management would require technically inclined users assisted by experts

Interpreting and appreciating the processed data typically require specialized equipment and software

Disaster management involves at least hundreds, and even up to thousands of manpower to conduct training, perform rescue operations, and drive rehabilitation initiatives

Data Ecosystem (Before Disaster)

Disaster Preparedness Training (Typical)

Philippines

Sources: https://www.researchgate.net/figure/Activities-to-prepare-the-pamphlets-of-tsunami-earthquake-by-volunteers-in-Japan_fig2_285613910 https://www.pdrf.org/preplab/

Data Ecosystem (During Disaster)

Geodetic Engineers Field Officers Researchers

Maps + Graphs + Paper Documents

Evolving Landscape of Disaster Management

Fast growing network and reach

Data Driven Decision making

Disaster unfolds in a non-linear manner

Solution:

RS:AR

Remote Sensing in Augmented Reality

Geospatial AR

Crowdsourced Data

From the movie "Avatar"

From the movie "Iron Man"

Disaster

Management

It is common to use satellite data to show post-disaster conditions. But a ground response team would still require experts on the field.

Data Insights

Disaster Management

With immersive technologies, we can directly **empower** ground response units, even without an expert.

Geospatial AR

Flood Planning

In this prototype demonstration, we are showing the flood visualization on a residential area, using satellite data reprojected into Augmented reality.

Geospatial AR

Conduct operations and planning anywhere.

Urban Flooding Scenarios

Escalating Fire and Evacuation Scenarios

Currently Engaging with:

Remote Sensing in Augmented Reality

but a collaborative, informative, immersive,

..extension of our senses

RS:AR, a better way to be resilient

From:

Delayed Utilization of Data

Inaccurate Data

Ineffective training method

Gut-feel forecasting

Independent operations

To:

On-demand stream of information

Up-to-date and relevant

Strategic & Immersive Preparedness

Data-driven forecasting

Community-involved management

"Resilience isn't just an outcome, it's a process."

- A. Gonzalez Adarna Aerospace

Ariston Gonzalez

- Launched two microsatellites into Low-Earth orbit
- Satellite Guidance systems
- MS Aerospace Engineering from *Tohoku University*

A D A R N A A E R O S P A C E

Lizbeth Joyce Daluz

- Software/Test Developer
- Electronics Engineer
- Former Technical Patent
- Specialist (Osaka, Japan)

The Team

Juan Paolo Espiritu

- Satellite BUS development
- Immersion Tech Developer
- Science Educator
- MS Aerospace Engineering from *Tohoku University*

Benjamin Jonah Magallon

- Satellite Payload development
- Remote Sensing Scientist
- Geodetic Engineer
- MS Cosmoscience from *Hokkaido University*

Finalist from ASIA Round

Using satellite data and augmented reality to save lives.

Using satellite data and augmented reality to save lives.

We are looking for: Early adopters Institutional Users **Partners**

ARISTON GONZALEZ

Contact us:

www.adarna.xyz

ariston@adarna.xyz

+639991155006 +639174326112