

Water, Sanitation, and Hygiene (WASH) assessments two years after Nepal 2015 earthquake

2nd IDRC 2019, World Bosai Forum November 12, 2019

Sital Uprety

Department of Civil and Environmental Engineering University of Illinois at Urbana-Champaign

Less than 50% Basic Water and Sanitation Coverage in many places

Basic Drinking Water Coverage

Basic Sanitation Coverage

Severity of the situation: Why we need more work?

Sanitation

What is being done? Sustainable Development Goal 6 (SDG 6)

- Ensure availability and sustainable management of water and sanitation for all.
- Increase the investments in sanitation and drinking water to meet the subtargets by 2030.

Challenges to meet SDGs?

- Increased number of natural disasters linked to climate change.¹
- Complications to meet SDG 6 by 2030 with increased number of natural disasters, esp in Asia as Water and Sanitation issues are worsening after any natural disaster.

EM-DAT: The OFDA/CRED International Disaster Database - www.emdat.be - Universite Catholique de Louvain, Brussels - Belgium

WASH Behavior and Diarrheal Diseases

- Because of limited resources
 and compromised living
 situation, natural disaster
 victims change their hygiene
 behaviors to meet the basic
 needs.¹
- This can result in a diarrheal disease outbreak like in Haiti after 2010 Earthquake.

FIGURE. Number of persons reporting symptoms of acute gastroenteritis after Hurricane Katrina at an evacuee medical clinic, by symptom and date — Houston, Texas, September 2–12, 2005

2010 HAITI OUTBREAK FOLLOWING EARTHQUAKE^{12,13}

Research Gap: What are we trying to address??

- How people adapt their WASH behavior after natural disaster?
- Is the adapted behavior helping or hurting their risks of getting infected with diarrheal diseases?
- Although intervention works, how effective is it in removing pathogens from households (microbial analysis)?

Interrelation: WASH Behavior and Other Factors

Pathogen exposure pathways at temporary and permanent settlements two years after the Nepal earthquake

Village 1: Permanent Settlements

Village 3: Temporary Settlements

10 Houses

- Both villages are located in one of the high risk districts for diarrheal diseases.
- They have similar population size and almost same hydroclimatic conditions.
- Water and sanitation samples were taken in 2017 from these two villages in triplicates for microbial quantification.
- Approximately 30 samples for each sample type for each village (V1 and V3) adding up to ~360 samples per sampling season.

Sample Types: F- Diagram

- 6 sample type collected from each house in each sampling round (3 sampling rounds)
 - Drinking Water (DW)
 - Cleaning Water (CW)
 - Handwash Water (HW)
 - Swab Toilet Handle (TH)
 - Swab Utensils (U)
 - Swab Water Vessel (WV)

Experimental Method

Biomark System

- Can simultaneously quantify up to 48 pathogens in the same sample.
- Faster, efficient and reliable quantification as conventional qPCR.
- 24 assays (bacterial pathogenic genes) were selected based on the primer validity and disease incidences in Nepal.
- 10 plates ran for total >300 samples collected in 2017.

48x48 plate = 2,304 reactions Less labor and less time than conventional qPCR

Results: Fluidigm Result

- Average assay efficiency = 93.4% Only assays
- greater than 90% and less than 110% are considered for the analysis.

Results: Overall detection in all samples

- Highest detection of *Enterococcus spp.* in ~78% of the samples.
- 63% of samples were positive for Legionella pneumphila.
- 34% of total samples had one gene of Salmonella typhimurium.

Enterococcus spp. significantly higher in toilet handle, utensils and water vessels in V3 compared to V1

Difference in *Legionella pneumophila* (miP) was only observed in water vessel

Statistical data between V1 and V3

Stat Summary: 🐴 V1 🚯 V3

		Enterococcus spp.	<i>E. coli</i> (uidA)	<i>Salmonella</i> (ttrC)	STEC (stx2)	<i>E. coli</i> (ftsZ)	<i>Legionella</i> (mip)
CW		0.66	0.29	0.18	0.63	0.18	0.96
DW	ц Ц	0.59	0.65	0.042*	0.91	0.97	0.90
НW	Ê	0.20	0.98	0.027*	0.30	0.92	0.76
ΤН		<0.001***	0.51	0.14	0.19	0.55	0.95
U		0.013**	0.61	0.21	0.66	0.33	0.59
WV		<0.001***	0.74	0.0018**	0.43	0.24	0.002**

Can microbial composition help us understand this in a better way?

- Possible difference in bacterial profile between different villages and different samples were sought.
- Investigate the 16S profile to see if we missed any important bacteria.
- Investigate whether or not, there is a transfer between water samples and hygiene samples.

Previous studies have also shown different between attached and freeliving bacterial profile

24

Microbes were evenly distributed between V1 and V3

Microbial composition different between sample type

26

Relative Abundance: Class level

- *Enterococcus* spp. indicated a possible higher risk in the village with temporary settlements compared to the village with permanent settlements.
- Possible high risk of infection by *Salmonella typhirimium* and *Legionella penumophila* from water vessel. QMRA will make this more clear.
- Sequencing results showed a very different bacterial profile for sanitation samples compared to water samples. Pathogenic family more dominant in swab samples compared to water samples.
- Recovery affects microbial contamination.

Side note: Undergrads contributed a lot to this project

Thank you!

